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ABSTRACT 

In this paper we generalize Sierpinski's concept  of sets of type S a n d  give a 
characterization of such sets in terms of a parti t ion of the reals. We also give a 
similar characterization of  Lusin sets. 

1. Introduction 

In [2] Sierpinski considers sets of  real numbers which have the property that 

every subset of(Lebesgue) measure zero is at most countable. Such a set is said to 

have property S. Since every set of  positive measure contains a perfect set having 

measure zero, sets with property S can also be characterized as those sets of  real 

numbers such that every uncountable subset is non-measurable. Sierpinski shows 

(p. 80) that if the continuum hypothesis is assumed, then there is an uncountable 

set having property S. In this paper we prove that if the continuum hypothesis 

holds, then there is a partit ion of  the set of  real numbers by an uncountable family 

of  sets (each member of  which is an uncountable set of  measure zero) such that 

a subset of  R has property S if and only if it intersects each member of  the parti- 

tion in a set which is at most countable. F rom this it is clear that there are un- 

countable sets which have property S. Since the only property of  Lebesgue mea- 

sure required to obtain this result is that it is non-atomic, we obtain the result for 

an arbitrary non-atomic Borel measure. In a final section, we apply the same 

methods to obtain a similar characterization of  Lusin sets. In view of  P. Cohen's 

p roof  of  the independence of  the continuum hypothesis from the axioms of  set 

theory, it would be interesting to know whether or not the existence of  sets with 

property S (or of  Lusin sets) is also independent of  these axioms. The present 
authors are not aware of  any results in this direction. 
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2. Property S 

Let m be a fixed Borel measure on R. (Recall that  every such measure is regu- 

lar.) A set T in R is said to have property S relative to m if T ca E is at mos t  

countable for every set E of  m-measure zero. By supp m denote the support  of  m 

(that is, the complement of  the largest open set of  m measure zero). The following 

is thert obvious. 

LEMMA 1. Let T have property S relative to m. Then T ca (supp m) c is at most 

countable. 

The measure m is called atomic if there is an (at most)  countable set X such 

that  m(A) = ~ {m((x}) : x ~ A Ca X}, for every Borel set A and m((x}) > 0 for 

all x E X. (In this case, we say that  m is concentrated on X.) The measure m is 

called diffuse if m((x}) = 0 for all x ~ R. I t  is well known that  if m is any Borel 

measure, there are unique Borel measures m a and m~ such that  m s is atomic, md is 

diffuse and m = ma + m~. 

LEMMA 2. Let m = m~ + m d be the decomposition of m into its atomic and 

diffuse parts. A set T has property Srelative to m i f  and only if  it has property 

S relative to m d. 

PROOF. ( r  Let E have m-measure zero. Then E has md-measure zero and 

so T ca E is at most  countable. 

( ~ ) Let E have rod-measure zero and let X be the set on which mo is concen- 

trated. Then E -  X has ma-measure zero (and hence m-measure zero) so that  

(T  ca E) - X is at most  countable. But since X is at most  countable, this implies 

T ca E is at most  countable. 

F rom the above lemma, the task of  describing all sets having proper ty  S rela- 

tive to m is equivalent to that  o f  describing all sets having proper ty  S relative to 

rod. Hence we will assume without loss of  generality that  m is diffuse. I f  m is the 

zero measure, it is clear that  the family of  sets having proper ty  S relative to m is 

exactly the family of  all sets which are at most  countable. So f rom now on we may 

assume that  m is a non-zero diffuse measure. Thus, in particular, it follows that  

supp m is a perfect set (and hence uncountable). 

Let ~ denote the set o f  all G6's in supp m which are uncountable and have 

m-measure zero. (By a G6 in supp m is meant  the intersection of  an at mos t  coun- 

table family of  relatively open subsets of  supp m or equivalently, the intersection 

of a G6 of  R with supp m.) 
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LEMMA 3. The cardinal number of ff is 2 "~ 

PROOF. We will show that  there is an uncountable G~ set G in supp m having 

m-measure zero. Then for every finite set X in (supp m - G), G w X  is an uncount- 

able G~ in supp m having m-measure zero. Since there are 2 % such sets disjoint 

f rom X, it follows that  the cardinal number of  fr is at least 2 ~~ Since the cardinal 

number  of  the set o f  G6's in R is 2 ~~ the cardinal number  of  fr is at most  2 % 

and the result follows by the Schroeder-Bernstein theorem. 

Thus we only need to show that  there is an uncountable G~ in supp m of  m- 

measure zero. Without loss of  generality, we may assume that  m(R) = 1 and supp 

m is compact.  Since m is diffuse, the distribution function f o f  m is continuous. 

(Recall t ha t f ( t )  = m(( - oo, t]) for t ~ R.) For  k = 1, 2,.-- and for i = 1, .--, 3 k, define 

tk,, = inf {t: f ( t )  > i/3k}. Define tk,O = sup {t:f(t) = 0}. (Note that  the set W = 

{tk,~: k = 1,2, . . .  and i = 0, 1,.. . ,  3 k} is a subset o f  supp m.) 

For  k = 1,2, ... define, 

Sk = • {(tk,3~+l,tk,3i+2) : i = 0, 1, ." ,3~-1}.  

Then we have, 

m ( u  {Sk: k = 1,2, . . . ,n})  = 1 - ( 2 / 3 )  n+l 

Hence the set G = supp m - u {Sk: k = 1,2, "" } is a Gb in supp m having m- 

measure zero. I t  is clear that  every point in G is a limit point o f  the set W n G. 

Since G is a closed subset of  R and W C~ G c G, it follows that  G is a perfect subset 

of  R and hence uncountable. 

In order to characterize the family of  sets having proper ty  S relative to m, we 

need some preliminary remarks.  (We continue to assume that  m is diffuse and not  

zero.) Assume the continuum hypothesis and enumerate the elements of  supp m. 

Thus supp m = {x,: ~ < fl}, where f~ is the first uncountable ordinal. Let ~ = 

{E,: r f~} be an enumeration of  the uncountable G~'s in supp m having m-meas- 

ure zero. (This is possible by the above lemma.) 

Let {A~ :~ < ~} be a family of  subsets of  supp m. For  convenience we list here 

some properties (that the family may possess) which will be useful below. 

1) For  all ~ < f~, the set E~ - u {An:/~ < ~} is at most  countable. 

2) Fo r  all ~ < f~, A, is an uncountable set of  m-measure zero. 

3) For  all ~, fl < f~ A~ n A a -- ~ .  

4) For  all ~ < f~, x~ ~ U {A~: fl < a}. 
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The following theorem gives a characterization of subsets of R having property S 

relative to m in terms of the enumeration of ff fixed above. 

THEOREM 1. Let {A~: ~ < f~} be a fami ly  of subsets of R which satisfies con- 

ditions 1 and 2 let T be a subset of R. Then T has property S relative to m if  and 

only if  T r m) c and T NA~ are at most countable for all o~ < ~. 

PROOF. ( =~ ) This is obvious. 

(~=) Let E be an arbitrary G0 of  m-measure zero. Then E n supp m = E~ for 

some 0~ < FL Thus, 

T O E  c [T ~ (supp m) c] U [E~ - u {Aa: fl _-< ~}] U IT  ~ {Aa: fl __< c~}]. 

Since all three sets on the right side of the above inequality are at most countable, 

it follows that  T ~ E is at most countable. Since the regularity of  m implies that 

every set of m-m~asure zero is contained in a G~ of m-measure zero, the proof 

is complete. 

THEOREM 2. There is a fami ly  {A~: e < fl} of subsets of R satisfying condi- 

tions 1, 2, 3, and 4 above. 

PROOF. Let Ao = Eo W {xo}. Now assume that Ap has been defined for all 

fl < e such that conditions 1,2,3 and 4 hold for the family {Ap: fl < e}. Define 

S~ = E~ - u {Ap: fl < 0e}. We consider two cases. 

Case 1. If  S, is uncountable, define, 

= u - u {Ap: < 

Case 2. If  S~ is countable, let A = u {Ap: fl < ~}. Then A has m-measure 

zero by Condition 2. Hence R - A has positive m-measure. It then follows that  

R - A contains a perfect Go set A* of m-measure zero. (The proof is essentially 

that  of  Lemma 3 above.) Define, 

A,  -- [ A *  U {x~}] - O {Aa:fl < o~}. 

In either case, the family of sets satisfies conditions 1,2, 3 and 4. The result then 

follows by transfinite induction. 

The following consequences of Theorems 1 and 2 may now be derived. (Of 

course, we continue to assume the continuum hypothesis.) 

THEOREM 3. Let m be a Borel measure on R. There is a partition {A=: 

< ~} of R by sets which are countable or of m-measure zero (and non-empty if  

m is non-atomic) such that a set T has property S relative to m i f  and only i f  

T N A~ is at most countable for all oc < fL 
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PROOF. If  m is atomic, let Ao = X = the set on which m is concentrated, let 

A1 = R - X, and let A, = ~ f o r  1 < c~ < f~. I f  m is not  atomic apply Lemma 2 

and Theorems 1 and 2. 

Note in the case that m is diffuse, Theorem 2 actually guarantees the exist- 

ence of  a partition of  R by uncountable sets of  m-measure zero. 

COROLLARY 1. Let m be a non-atomic Borel measure. Then there is an un- 

countable set T havin9 property S relative to m. 

PROOF. This is a consequence of  Theorems 1 and 2. 

COROLLARY 2. Let m be a non-atomic Borel measure. Then there is an (uncount- 

able) m-non-measurable set (in the sense of Carathdodory) with the property 

that every uncountable subset is also m-non-measurable. 

PROOF. Let T be an uncountable set having property S relative to m. If  U is 
any uncountable subset of  T which is measurable, then U must have positive 

m-measure. But then U contains an uncountable set with m-measure zero. (The 

proof  is essentially the same as that of  Lemma 3 above.) This is a contradiction. 

COROLLARY 3. Let m be a non-atomic Borel measure. A necessary and sufficient 

condition that a set Y contain an uncountable set havin# property S relative to 

m is that Y have positive exterior m-measure. 

PROOF. That the  condition is necessary is obvious. In order to prove sufficiency, 

let {A~: e < f~} be a partition as in Theorem 3. Since Y is not an m-null set, the 

set B = {c~: Y n A, -r ~ }  must be uncountable. By the axiom of  choice, there is a 
set T c  Y such that T n A, is a singleton for each c~ e B. Then T is an uncountable 

subset of  Y and, by Theorem 3, satisfies property S relative to m. 

In conclusion, we remark that Corollaries 1,2 and 3 are generalizations of  

theorems proved by Sierpinski ([2], pp. 80, 87, 82) in the case that  m is Lebesgue 

measure. We believe Theorems 1,2 and 3 to be new. It is easy to show by example 
that Corollary 1 does not hold for an arbitrary partition. 

3. Lusin sets 

In this section, we apply the methods used to the study of  Lusin sets. Recall 

that a set T is a Lusin set if the intersection of  T with each perfect nowhere dense 

set is at most countable. It is known that the set ~ of  perfect nowhere dense sets 

has cardinal number 2 ~ Assuming the continuum hypothesis, let {x~: a < f~} and 

{F,: a < ~} be enumerations of  R and f f  respectively. 
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THEOREM 4. There is a partition {A~: a < f~} of R by non-empty nowhere 

dense sets such that T is a Lusin set if and only if  T N A~ is at most countable 

for  all a < f~. 

PROOF. Define A N = Fo u {Xo}. I f  Aa* has been defined for fl < c~, define A* 

= [f~ U {x~}] - k3 {A~: fl < a}.Thus, by transfinite induction, A* is defined for 

all ~ < fL Let ~1= {A*: A*#2~}. Since the sets belonging to d are nowhere dense 

and since t3 M = R, Baire's category theorem implies that ~ is uncountable. Let 

,~1= {A,: ~ < f~} be an enumeration o f ~ .  Thus~r is a partition of  R by non-empty 

nowhere dense sets. Furthermore,  since each set insr is a subset of  a perfect no- 

where set, it is clear that the condition of  the theorem is necessary. 

Let T be a set which intersects each member of~r in a set which is at most 

countable and let F be any perfect nowhere sense set. Then F = F~ for some 

tz < ~. Thus, 

T nF~__. IT  (hA:]  t3 [ T N i u  {A~: fl < a}]. 

Since A~* = J2~or A* ~ M for all 7<f~, it follows that both sets on the right side 

of  the above inequality are at most  countable and hence t h a t  T n F is at most  

countable. 

COROLLARY 4. There is an uncountable Lusin set. 

PROOF. This is immediate from Theorem 4. 
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